Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cell Mol Life Sci ; 78(24): 8229-8242, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1503964

RESUMEN

Mitogen-activated protein kinase (MAPK) signalling pathways are crucial for developmental processes, oncogenesis, and inflammation, including the production of proinflammatory cytokines caused by reactive oxygen species and upon severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are no drugs that can effectively prevent excessive inflammatory responses in endothelial cells in the lungs, heart, brain, and kidneys, which are considered the main causes of severe coronavirus disease 2019 (COVID-19). In this work, we demonstrate that human MAPKs, i.e. extracellular signal-regulated kinases 1 and 2 (ERK1/2), are CO2 sensors and CO2 is an efficient anti-inflammatory compound that exerts its effects through inactivating ERK1/2 in cultured endothelial cells when the CO2 concentration is elevated. CO2 is a potent inhibitor of cellular proinflammatory responses caused by H2O2 or the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2. ERK1/2 activated by the combined action of RBD and cytokines crucial for the development of severe COVID-19, i.e. interferon-gamma (IFNγ) and tumour necrosis factor-α (TNFα), are more effectively inactivated by CO2 than by dexamethasone or acetylsalicylic acid in human bronchial epithelial cells. Previously, many preclinical and clinical studies showed that the transient application of 5-8% CO2 is safe and effective in the treatment of many diseases. Therefore, our research indicates that CO2 may be used for the treatment of COVID-19 as well as the modification of hundreds of cellular pathways.


Asunto(s)
Antiinflamatorios/farmacología , Tratamiento Farmacológico de COVID-19 , Dióxido de Carbono/farmacología , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 3 Activada por Mitógenos/antagonistas & inhibidores , COVID-19/inmunología , COVID-19/patología , Línea Celular , Células Endoteliales de la Vena Umbilical Humana , Humanos , Peróxido de Hidrógeno/toxicidad , Inflamación/tratamiento farmacológico , Interferón gamma/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Dominios Proteicos/efectos de los fármacos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Factor de Necrosis Tumoral alfa/efectos de los fármacos
2.
Front Endocrinol (Lausanne) ; 12: 714909, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1497067

RESUMEN

Background: Clinically, evidence shows that uterine corpus endometrial carcinoma (UCEC) patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may have a higher death-rate. However, current anti-UCEC/coronavirus disease 2019 (COVID-19) treatment is lacking. Plumbagin (PLB), a pharmacologically active alkaloid, is an emerging anti-cancer inhibitor. Accordingly, the current report was designed to identify and characterize the anti-UCEC function and mechanism of PLB in the treatment of patients infected with SARS-CoV-2 via integrated in silico analysis. Methods: The clinical analyses of UCEC and COVID-19 in patients were conducted using online-accessible tools. Meanwhile, in silico methods including network pharmacology and biological molecular docking aimed to screen and characterize the anti-UCEC/COVID-19 functions, bio targets, and mechanisms of the action of PLB. Results: The bioinformatics data uncovered the clinical characteristics of UCEC patients infected with SARS-CoV-2, including specific genes, health risk, survival rate, and prognostic index. Network pharmacology findings disclosed that PLB-exerted anti-UCEC/COVID-19 effects were achieved through anti-proliferation, inducing cytotoxicity and apoptosis, anti-inflammation, immunomodulation, and modulation of some of the key molecular pathways associated with anti-inflammatory and immunomodulating actions. Following molecular docking analysis, in silico investigation helped identify the anti-UCEC/COVID-19 pharmacological bio targets of PLB, including mitogen-activated protein kinase 3 (MAPK3), tumor necrosis factor (TNF), and urokinase-type plasminogen activator (PLAU). Conclusions: Based on the present bioinformatic and in silico findings, the clinical characterization of UCEC/COVID-19 patients was revealed. The candidate, core bio targets, and molecular pathways of PLB action in the potential treatment of UCEC/COVID-19 were identified accordingly.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , Carcinoma Endometrioide , Neoplasias Endometriales , Interacciones Huésped-Patógeno , Naftoquinonas/farmacología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/complicaciones , COVID-19/diagnóstico , COVID-19/genética , Proteínas de Unión al Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Carcinoma Endometrioide/complicaciones , Carcinoma Endometrioide/diagnóstico , Carcinoma Endometrioide/tratamiento farmacológico , Carcinoma Endometrioide/genética , Biología Computacional , Ensayos de Selección de Medicamentos Antitumorales/métodos , Neoplasias Endometriales/complicaciones , Neoplasias Endometriales/diagnóstico , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Estudios de Asociación Genética , Interacciones Huésped-Patógeno/efectos de los fármacos , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas de la Membrana/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Persona de Mediana Edad , Proteína Quinasa 3 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular/métodos , Naftoquinonas/uso terapéutico , Pronóstico , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Útero/efectos de los fármacos , Útero/metabolismo , Útero/patología , Útero/virología
3.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1246687

RESUMEN

BACKGROUND: The clinical consequences of SARS-CoV-2 and DENGUE virus co-infection are not promising. However, their treatment options are currently unavailable. Current studies have shown that quercetin is both resistant to COVID-19 and DENGUE; this study aimed to evaluate the possible functional roles and underlying mechanisms of action of quercetin as a potential molecular candidate against COVID-19 and DENGUE co-infection. METHODS: We used a series of bioinformatics analyses to understand and characterize the biological functions, pharmacological targets and therapeutic mechanisms of quercetin in COVID-19 and DENGUE co-infection. RESULTS: We revealed the clinical characteristics of COVID-19 and DENGUE, including pathological mechanisms, key inflammatory pathways and possible methods of intervention, 60 overlapping targets related to the co-infection and the drug were identified, the protein-protein interaction (PPI) was constructed and TNFα, CCL-2 and CXCL8 could become potential drug targets. Furthermore, we disclosed the signaling pathways, biological functions and upstream pathway activity of quercetin in COVID-19 and DENGUE. The analysis indicated that quercetin could inhibit cytokines release, alleviate excessive immune responses and eliminate inflammation, through NF-κB, IL-17 and Toll-like receptor signaling pathway. CONCLUSIONS: This study is the first to reveal quercetin as a pharmacological drug for COVID-19 and DENGUE co-infection. COVID-19 and DENGUE co-infection remain a potential threat to the world's public health system. Therefore, we need innovative thinking to provide admissible evidence for quercetin as a potential molecule drug for the treatment of COVID-19 and DENGUE, but the findings have not been verified in actual patients, so further clinical drug trials are needed.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Virus del Dengue/química , Dengue/tratamiento farmacológico , Quercetina/química , SARS-CoV-2/química , COVID-19/complicaciones , COVID-19/genética , COVID-19/virología , Quimiocina CCL2/química , Quimiocina CCL2/efectos de los fármacos , Quimiocina CCL2/genética , Coinfección/tratamiento farmacológico , Coinfección/genética , Coinfección/virología , Dengue/complicaciones , Dengue/genética , Dengue/virología , Virus del Dengue/efectos de los fármacos , Humanos , Interleucina-17/genética , Interleucina-8/química , Interleucina-8/efectos de los fármacos , Interleucina-8/genética , FN-kappa B/efectos de los fármacos , FN-kappa B/genética , Mapas de Interacción de Proteínas/efectos de los fármacos , Quercetina/uso terapéutico , SARS-CoV-2/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/química , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/genética
4.
Biomed Pharmacother ; 131: 110643, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-726408

RESUMEN

Coronavirus Disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2) has been widely spread in the world with a high mortality. Cytokine storm syndrome (CSS) and acute lung injury caused by SARS-CoV-2 infection severely threaten the patients. With the purpose to find effective and low-toxic drugs to mitigate CSS, entecavir and imipenem were identified to reduce TNF-α using a LPS-induced macrophage model from the anti-infective drug library. Entecavir and imipenem efficiently suppressed the release of inflammatory cytokines by partly intervention of NF-κB activity. The acute lung injury was also alleviated and the survival time was prolonged in mice. In addition, entecavir and imipenem inhibited the release of TNF-α and IL-10 in human peripheral blood mononuclear cells (hPBMCs). Collectively, we proposed that entecavir and imipenem might be candidates for the treatment of CSS.


Asunto(s)
Infecciones por Coronavirus/tratamiento farmacológico , Síndrome de Liberación de Citoquinas/tratamiento farmacológico , Guanina/análogos & derivados , Imipenem/farmacología , Neumonía Viral/tratamiento farmacológico , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/virología , Animales , COVID-19 , Infecciones por Coronavirus/complicaciones , Síndrome de Liberación de Citoquinas/virología , Citocinas/inmunología , Reposicionamiento de Medicamentos , Guanina/farmacología , Humanos , Interleucina-10/inmunología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Lipopolisacáridos , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Pandemias , Neumonía Viral/complicaciones , Factor de Necrosis Tumoral alfa/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA